SOLUTION OF CERTAIN VARJATIONAL PROBLEMS OF THERMAL
RESILIENCE FOR THIN SHELLS CONSIDERING THE SELECTION
OF OPTIMUM CONDITIONS FOR LOCALIZED HEAT TREATMENT

Ié. I. Grigolyuk, Ya. I. Burak, and Ya. S. Podstrigach

One of the possible ways of stating and solving the selection problem for optimum
temperature fields for localized axisymmetric heating of shells is investigated.
The minimum of shell elastic energy is taken as the optimization criterion. An
infinite cylindrical shell was considered in a similar formulation in [1]. The
corresponding variational problem is formulated for the functional of elastic
energy with additional limitations imposed on the function of twist angle at
specified shell sections. The variational problem is reduced to an isoperimetric
by the use of singular functionals of the 6-function kind. The related Euler equa-
tion is obtained, and this together with the problem resolvent equation constitute
a complete set of equations for determining the extremum temperature field with
related stress-strain state of the shell. Cylindrical, conical, and spherical shells
are considered separately. A numerical analysis is made for the simplest condi-
tions of localized heating of cylindrical and conical shells.

1. Let a shell of revolution, represented in canonical coordinates of its primary curvatures, be
under the influence of an axisymmetric temperature field. In the absence of external forces, the problem
of defining the stress-strain state of the shell for a given temperature field can then be reduced to finding
the function of twist angles which would satisfy the resolvent equation
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Here 6 (s) is a function of twist angle of the shell median surface; T(s) is the temperature; s is the
length of the meridian arc measured from a given section; r=r(s) is a cross-section radius; k; and k, are
the curvatures of meridians and parallels, respectively; Dy is the rigidity in tension; D, the torsional rigid-
ity; E is the modulus of elasticity; v is the Poisson coefficient; 2h is the shell thickness; « is the coefficient
of thermal expansion. The dot over a magnitude denotes a derivative with respect to arc s. For the de-
termination of 8 Eq. (1.1) must be supplemented by suitable conditions at the ends of the shell. When
function 6(s) has beenfound, nonzero stresses N; and N,, moments M; and M,, and the strain components
g, &, "y, and ®y of the median surface of the shell are defined by
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Here subscripts 1 and 2 denote magnitudes in the meridional and the parallel directions, respectively.

We introduce into our considerations the elastic energy of the shell [1]

K = \\ (N + Nogg® + My%.® + Myny0) dSS, (1.3)
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Here S is the median surface of the shell, and &f, &% %', and %y’ are elastic stain components.

The integrand in (1.8) is a positively defined quadratic form with respect to stresses and moments,
if and only if the temperature-induced stresses are zero. L is therefore natural, when solving a problem
of localized heating which results in a comparatively low level of temperature-induced stresses, to take
the minimum of functional (1.3) of the shell elastic energy as the integral condition of optimization.

Substituting (1.2) and (1.4) into (1.3), we obtain

K@= 4D S F(s,0,0,0,07)ds. (1.5)
€Ly

Here (L) is the meridional line, and the following notation has been used
r » o r\2 . o r\2
F= T{Vz_sz vV - <_r_> Viim [ez +2v-g0 +(T> ez]},

V=L [%(_;?+’T')+(1._v) lclkz} 0. (1.6)

The variational problem is formulated as follows. First, we have to find the extremum of functional

K[6] for the set of functions 0=0(s) satisfying the following conditions:

1) at specified sections s=s; G=1, 2, ..., n)

s

d®Dg (s, i
——d—g—]l———@ij, S 9(s)ds: ;i (}':0, 1, 2); @a.7)
§ 8a
2) at end sections s=s; and s=sx
i) (%),
40060 _ g 4006 g —0,1,2, 1.8)
ds* ds* )

Here 8;; and §; are arbitrary numbers which can be further defined by specifying at sections $=8;
numerical values for the problem parameters {temperature, stresses, moments, etc.). It should be
noted that 8, and 0% must be bound by additional relationships owing to conditions at the free ends. The

stated problem is equivalent to this isoperimetric problem.
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Second, we have to find the extremum of functional K[f] for the set of functions #=0(s) whose func-

)6(” (s—s;)6(s)ds, K;[Q]:S*S+(sj—s)9(s)ds (1.9)

tionals
Kij (6] = (—
in which 6% (s) is the i-th derivative of the delta function and Sy (s) is the jump function, assuming the

(1.10)

specified values
K]' [6] == 9]-.

K;; (8] = 6y,

It is assumed here that each function of the considered set satisfies (1.8)

Such a problem reduces to finding the extremum of functional [3]
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} ds.
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The Euler equation for

Here A;; and Ay are arbitrary constants which ensure the fulfillment of (1.7)

the functional K*(8) yields
aF d oF dz2 [ 9F ds [ OF
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Equation (1.12) together with the resolvent equation (1.1) and (1.7) and (1.8) constitute the complete
system of relationships defining the temperature field and the related stress-strain state of the shell

Let us write the fundamental equations for ¢ylindrical, conical, and spherical shells
Equations (1.1) and (1.12) with (1. 2) written

2.
a) Cylindrical Shell. (k;=0, k,=1/R, r=R, and ¥=0).
in terms of the axial x-coordinate are of the form
d9 _am dT
wtEd=F m 2.1)
dse 126 n 2
m a 0 1
Tt = Zl [12_10%”-6” (e— ) + 1S, (5 ) | 2.2
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Ny=0, No=—DRE, My=—D%, My=—+D3. 2.3)

dx3 !
By virtue of (2.1) we obtain from (2.2) the following equation

ds7 2\ (1) ‘

L = A0 —x;) + MSs (55— 2) s

dx’ am32 ‘Z_'Il [go 1 (.’Iﬁ .7)]) ( )] (2.4)
by which it is possible to determine directly extremum temperature fields.

b) Conical Shell. We denote by 8 the angle between the shell axis and the generatrix of its median
surface. The s-coordinate will be measured from the cone vertex. Then

ctg
8

w

k]_:O, k2:

. : 1
, r=ssinf, rT=T‘ (2.5)

Substituting these values into Eqs. (1.1), (1.11), and (1.2), we obtain

d49
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Comparison of the left-hand sides of Egs. (2.6) and (2.7) shows that extremum temperature fields of
a conical shell are defined by an equation similar to (2. 4)

n 2
d 1 d dT ctgB 1. ¢ (i) v ]
arLd _ B 1 Aid® (s = 55) + LS, (55— 9)].
ds [ s ds (S ds ﬂ amsinB s 2 Lélo 40 (8 — ;) + A8 (55— 5) 2.9)
¢) Spherical Shell. In this case
1 . :
ky=ky— 4, s=Rg, r=Rsing, - =-ctgq. (2.10)

Here R is the radius of the shell curvature and ¢ is the meridian arc measured from the axis of
revolution. The resolvent equation (1.1) and the Euler eéquation (1.12) can now be reduced to the form

/ d? d dz d "
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The expressions defining stresses Ny and Ny and moments M; and M, are

T Dyctg g [ d% a8 ,
Ny=— DEEC [ 1 otg g G — (v 4 cigg) 6]
Dy [ d% az 10, 2ctg Q]
No=— g [dqﬁ +otg @ g — (L v+ 2eig*e) g & Sip J
F:
M1:~%<%+vctg(p6>, M-z:“%(ctg(w-[-v-%). (2.13)

To determine coefficients A;; and ;, and the constants of integration it is necessary in each of these
cases to supplement the derived relationships by (1.7) and (1.8) or conditions corresponding to other param-
eters of the problem.

Solutions of this problem for an infinite cylindrical shell and for a conical shell closed at the vertex
are given below.

3. To determine the extremum solution in an infinite eylindrical shell we use (2,1) and (2.4) as the
input equations, and write these in the form

a4 = aT z 3(1—v?) R?
T+ 40 = daa IT (g:af,a“:—-—‘-—w ) 8.1
n 2
d . i "
= 2 D e = —ns G—8), (3.2)

j=1 "i==0
Here vij and Yj are arbitrary constants.

Let us find the solution of Eqs. (3.1) and (3.2) that vanishes at infinity. With the use of the Fourier
transformation we obtain [4]

[ E— 8+ 5 E— &7 + 7 E—5) + 10| s E—E), .3)

0= {[l;— E—&rP+10E—§) + Tu} sgn (E—§&) +

T
Jj=1
e sin (B — &) + "2 (cos (— &) —sin|§ — &) —
~ 11590 (E— &) cos (§— &) + 1a;(cos (E—§&) +sin[E—§; I)] } . 3.4)

-The coefficients vjj and vj must now satisfy the relationships

D=0, D @E—1) =0, 2 (& — 21 + 1) =0,
j=1

=1 - J=1
n

2 (135 — 3ro&? + 67,8 — bra) = 0. (3.5)

j=1

The hoop stress N, and the axial moment M; calculated by (2.3) with (3.4) taken into account are

Ny = —Ez—u 2 "—7i(cos (E—E) + sin|E—E;]) + 2ry;sin E—§) +
P

+ 2115 (cos (& QEJ-) —5in | E— & |) — 1oy sgn (E— &) cos (E— &) e, (3.6)
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My = —Z0R S 001 E— & |+ 15 (cos (E— &) —sin | E— & ) ¢
=
+ 270 (1 — e cos (E— &) sgn (B — &) + [21yi (cos G — &) +
4 sin|E— &) — drysin (E—E) e ), (3.7)
Tt will be seen from (3.3) and (3.6) that the obtained extremum distribution of temperature T and

stresses N, is defined by piecewise-continuous functions. A distribution of T and N, is continuous with
respect to £, when y2j=0 is assumed.

Let us consider the particular case of the solution applicable to the simplest conditions of localized
heating. Let the locally heated zone be bounded by sections £=x7, at which the temperature is zero. Tem-
perature T attains its maximum equal T; at section £=0.

In this problem the extremum temperature field (3.3), which satisfies the condition of symmetry with
respect to section £=0 and is continuous as well as its first derivative, is defined by

T=T [20EmP—3EM+11 (EI<<w, I'=0 (&[>, 3.8)
The ring stress and the axial moment corresponding to (3.8) are defined by

Na =270 (005 (¢ 1) i | &4 ) 71571 (cos B m) - sin 2 el

— 2 (cos & +sin | El)‘[El 4 (e"ﬁ*’” sin (€ + 1) — e~ 151 gin (E—m)], (3.9)

=220 2+ ) 2[R — 41 eos @b —sin 8 a1
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— (1 —cos £+ e 2 sgn (€4 m) - n (4 — Cos E—n) e =V sgn g — W), .10
Curves
Ne—=_D2 W M1
Ehaly EhaRT,

are shown in Fig. 1 for v=0.3 and R/h=20 and 40 with the width of the heated zone equal to the cylinder
radius (n=a/2). Curves of these magnitudes for a heated-zone width equal to the cylinder diameter (1=a)
are given in Fig. 2. The profiles of the temperature fields T*=T/T, are shown in these by dashed lines.
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4. In a conical shell the extremum temperature fields
satisfy Eq. (2.9), whose general solution is of the form

7=
RV ?
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o ] S5 _ !
d where Cy, Cy, and C, are arbitrary constants. The extremum

solution obtained is a piecewise-continuous function. A con-
tinuous temperature distribution obtains for A»;=0. Should the
continuity of the first derivative also be required, Ajj =0 must
be stipulated.

Fig. 3

Let us consider an infinite conical shell closed at its vertex (s3=0, s,=%). We assume the tempera-
ture at the vertex and at infinity to be zero. It is then necessary to use solution (4.1), C;=0, Cy=0, and
C;=0, and impose on coefficients A;; and A the following conditions

n n
D=0, ?(len.._+x0]._+ q"+“5”>—0
=1 =1 I I

n

n A
) tanrod=0, N (G e =) =0 O <ep< )
=1 (4.2)

J=1

We separate from (4.1) the twice differentiable extremum temperature field which locally heats zone
81= s = 55 with the following conditions:

T()=0, T(s)=7Ty T{s)=0, T(s5=0, 4.9)

where 0<sy=<s;3. This solution is of the form

r— NI S Nl i P
To {[:dz ( o In 5 -+ s > 02 e S, (sa—s)+
N DYEEA VA e S
) : ‘3 (4.4)
Here
ay— — (511 52) 82 _ (52 - 33) 82
512 — 592 - 28182 1n (52 / 51) S9* — s3% -} 28352 In (s3/s3) )’
1 $1 S3 S92 — 51 832 — 552
gy = — —_ — 2
o 2 <sz — =5 + 53— S3 512 — 89225155 10 (s9/51) + 9% — 857 -+ 28953 10 (s3/52)
(4.5)
gy = {82 -} s3) 83 a03 = 3 259% In 83/ 83 — 59% - 552 .
88 — 592 - 2so53 [ (53/ 59) 2185 — 52) S22 — g% - 25283 In (s3/ 52) 4.5)

The numerical investigation of (4.4) was carried out for a heated-zone width equal to the diameter
of cross section s=s; (s3—s;=2R, where R is the cross-section radius) and s;—s,=s, ~s;, Curves of tem-
perature T*=T/T, are shown in Fig. 3 in terms of coordinate s*=(s-s,)/s; for several values of 8. The
case of f=0 corresponds to a cylindrical shell of radius R heated by the temperature field (3.8). The other
limit case (8=1/2m) corresponds to that of the plane development of a conical shell.

The analysis carried out above of extremum temperature fields in the examples of cylindrical and
conical shells was confined to the siinplest conditions for the localized heating, under which limits are
imposed on the variation of temperatur.: at specified sections of the shell. Extremum solutions for more
general conditions, which include supplementary conditions imposed on the level of temperature-induced
stresses, can be similarly derived. Such conditions can be satisfied by a suitable choice of parameters
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Ajjs Aj, and S appearing in the Euler equation (1.12). We point out that the temperature-field determina-
tion would, in that case, necessitate taking into consideration the complete set of equations of the problem.
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